Fork me on GitHub

[LeetCode] Concatenated Words 連接的單詞

 

Given a list of words (without duplicates), please write a program that returns all concatenated words in the given list of words.

A concatenated word is defined as a string that is comprised entirely of at least two shorter words in the given array.

Example:

Input: ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]

Output: ["catsdogcats","dogcatsdog","ratcatdogcat"]

Explanation: "catsdogcats" can be concatenated by "cats", "dog" and "cats"; 
"dogcatsdog" can be concatenated by "dog", "cats" and "dog";
"ratcatdogcat" can be concatenated by "rat", "cat", "dog" and "cat".

 

Note:

  1. The number of elements of the given array will not exceed 10,000
  2. The length sum of elements in the given array will not exceed 600,000.
  3. All the input string will only include lower case letters.
  4. The returned elements order does not matter.

 

這道題給了一個由單詞組成的數組,某些單詞是可能由其他的單詞組成的,讓我們找出所有這樣的單詞。這道題跟之前那道Word Break十分類似,我們可以對每一個單詞都調用之前那題的方法,我們首先把所有單詞都放到一個unordered_set中,這樣可以快速找到某個單詞是否在數組中存在。對于當前要判斷的單詞,我們先將其從set中刪去,然后調用之前的Word Break的解法,具體講解可以參見之前的帖子。如果是可以拆分,那么我們就存入結果res中,參見代碼如下:

 

解法一:

class Solution {
public:
    vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
        if (words.size() <= 2) return {};
        vector<string> res;
        unordered_set<string> dict(words.begin(), words.end());
        for (string word : words) {
            dict.erase(word);
            int len = word.size();
            if (len == 0) continue;
            vector<bool> v(len + 1, false);
            v[0] = true;
            for (int i = 0; i < len + 1; ++i) {
                for (int j = 0; j < i; ++j) {
                    if (v[j] && dict.count(word.substr(j, i - j))) {
                        v[i] = true;
                        break;
                    }
                }
            }
            if (v.back()) res.push_back(word);
            dict.insert(word);
        }
        return res;
    }
};

 

下面這種方法跟上面的方法很類似,不同的是判斷每個單詞的時候不用將其移除set,而是在判斷的過程中加了判斷,使其不會判斷單詞本身是否在集合set中存在,而且由于對單詞中子字符串的遍歷順序不同,加了一些優化在里面,使得其運算速度更快一些,參見代碼如下:

 

解法二:

class Solution {
public:
    vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
        vector<string> res;
        unordered_set<string> dict(words.begin(), words.end());
        for (string word : words) {
            int n = word.size();
            if (n == 0) continue;
            vector<bool> dp(n + 1, false);
            dp[0] = true;
            for (int i = 0; i < n; ++i) {
                if (!dp[i]) continue;
                for (int j = i + 1; j <= n; ++j) {
                    if (j - i < n && dict.count(word.substr(i, j - i))) {
                        dp[j] = true;
                    }
                }
                if (dp[n]) {res.push_back(word); break;}
            }
        }
        return res;
    }
};

 

下面這種方法是遞歸的寫法,其中遞歸函數中的cnt表示有其他單詞組成的個數,至少得由其他兩個單詞組成才符合題意,參見代碼如下:

 

解法三:

class Solution {
public:
    vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
        vector<string> res;
        unordered_set<string> dict(words.begin(), words.end());
        for (string word : words) {
            if (word.empty()) continue;
            if (helper(word, dict, 0, 0)) {
                res.push_back(word);
            }
        }
        return res;
    }
    bool helper(string& word, unordered_set<string>& dict, int pos, int cnt) {
        if (pos >= word.size() && cnt >= 2) return true;
        for (int i = 1; i <= (int)word.size() - pos; ++i) {
            string t = word.substr(pos, i);
            if (dict.count(t) && helper(word, dict, pos + i, cnt + 1)) {
                return true;
            }
        }
        return false;
    }
};

 

類似題目:

Word Break

 

參考資料:

https://discuss.leetcode.com/topic/72393/c-772-ms-dp-solution

https://discuss.leetcode.com/topic/72433/c-600ms-20-lines-of-code-dfs-solution-is-there-any-way-to-optimize

 

LeetCode All in One 題目講解匯總(持續更新中...)

posted @ 2017-01-05 23:59  Grandyang  閱讀(...)  評論(...編輯  收藏
Fork me on GitHub
三d开奖结果走势图